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Abstract. We investigate the statistical properties of uniform star polymers withf branches, 
modelled on lattices in two and three dimensions. We show that the growth constant exists 
and is equal to p< where p is the self-avoiding walk limit. The f dependence of the 
corresponding critical exponent ~ ( f )  is studied using exact enumeration and Monte Carlo 
techniques and the results are compared with the predictions of Miyake and Freed, obtained 
using chain conformation space renormalisation group methods. 

1. Introduction 

Over the last few years, there has been considerable interest in excluded-volume effects 
in branched polymer molecules. This was initiated by the field-theoretic approach of 
Lubensky and Isaacson (1979) but a good deal of work has also been carried out on 
the lattice version of this model (see Gaunt et a1 (1984) for a general discussion). The 
particular case of uniform star-branched polymers has been considered in some detail, 
since such molecules can now be synthesised having a variety of numbers (f) of 
branches and with various numbers ( n )  of monomers per branch (see for instance 
Roovers er a1 1983). 

A certain amount of theoretical work on uniform stars has also appeared (Daoud 
and Cotton 1982, Miyake and Freed 1983, 1984, Birshtein and Zhulina 1984, Vlahos 
and Kosmas 1984). Mazur and McCrackin (1977) studied these systems using Monte 
Carlo methods, as did Kolinski and Sikorski (1982), but their data were not analysed 
in a way which allows easy comparison with the recent theories mentioned above. 

Suppose that the number of uniform stars with n monomers in each of the f 
branches is s,(f); then one expects that asymptotically ( n  +CO) 

s,(f)- nYCf ) - 'A ( f ) " .  (1.1) 

Using a chain conformation space renormalisation group method, Miyake and Freed 
(1983) predict that 

r(f)= 1+Q&[1-~(f - l ) ( f -2) ]+O(E2) ,  (1.2) 

where E = 4 - d and d is the spatial dimension. 
In a preliminary publication (Lipson et a1 1985), we have studied a lattice version 

of this problem using exact enumeration and Monte Carlo techniques and have 

0305-4470/86/050789 +08$02.50 @ 1986 The Institute of Physics 789 



790 M K Wilkinson, D S Gaunt, J E G Lipson and S G Whittington 

estimated y(3) and y(4) for several lattices in two and three dimensions. In this work, 
we extend these data to f = 5 and 6, report improved statistics for the Monte Carlo 
calculations and perform a more detailed analysis. In addition, we show rigorously 
that the growth constant A(f) (see (1.1) above) exists and is identically equal to pf, 
where p is the self-avoiding walk limit. 

2. The growth constant of uniform stars 

In this section, we shall prove the existence of the growth constant for uniform stars 
and relate it to that for self-avoiding walks. We consider the hypercubic lattice with 
the lattice vertices at the integer points in a d-dimensional Euclidean space, and with 
the branch point of the star at the origin. The maximum number of branches in the 
star is equal to 2d, the coordination number of a d-dimensional hypercubic lattice. 

Let s , ( f )  be the number of uniform stars with f branches, having n edges in each 
branch, weakly embeddable in the lattice. Similarly, let t n ( f )  be the number of stars 
with a total of n edges in f (not necessarily equal) branches and let c, be the number 
of self-avoiding walks with n edges. Lipson and Whittington (1983) have shown that 

lim n-’ log t , ( f )  = lim n-’ log c, =log p. 
n-33 n - a  

Since uniform stars are a subset of these stars, 

so that 

We now define a region of the lattice which we call a ‘wedge’. Let (x,, x2,. . . , xd) 
be the coordinates of a lattice point. For 0 C E S 1, the wedge wk( E )  is the set of lattice 
points which satisfy the conditions 

-(I - &)Xk c x p  (1 - & ) X k  V p Z k  (2.4) 

and 

xk 3 0. (2.5) 

k is an integer which runs from 1 to d. Similarly, W-k is the set of points which satisfy 
analogous conditions to (2.4) and (2.5) but with the inequalities reversed. That is, 
there is a wedge directed along each positive and along each negative coordinate axis. 
If c,( W )  is the number of self-avoiding walks with n edges, starting at the origin and 
confined to lie in a wedge W, Hammersley and Whittington (1985) have shown that 

n-m lim n-’  log c,( W )  = log p (2.6) 

for any E strictly less than unity. If we choose E strictly greater than zero, these wedges 
are disjoint except that they all share the same origin. If we consider the graphs 
obtained by taking the union of n-edge self-avoiding walks confined to f separate 
wedges, we see that there are c,( W)’ such graphs and that these graphs are a subset 
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of the uniform stars with f branches and n edges in each branch. This observation, 
together with (2.6) and (2.3), establishes that 

(2.7) lim n-' log s , , ( f )  = log pf. 
n-cc 

Hence, the growth constant is given by 

A(f) = d 
Finally, we note that constructions such as those described above can be used to 

derive upper and lower bounds on y(f).  We have explored this approach but found 
the resulting bounds to be weak. 

3. Estimates of y(f) 

In this section we report exact enumeration and Monte Carlo data on uniform stars, 
with f s 6 ,  weakly embeddable in various lattices in two and three dimensions. We 
use these data to estimate the critical exponent -y(f)  and compare our results with the 
predictions of Miyake and Freed (1984). 

We have generated exact enumeration data for uniform stars on the square (sQ), 
triangular (T), diamond (D), simple cubic (sc), body-centred cubic (BCC) and face- 
centred cubic (FCC) lattices. The results are tabulated in the appendix, tables A1-3. 
Since the growth constant A ( f )  is given in terms of the self-avoiding walk limit /.L by 
(2.8), we have used the best unbiased numerical estimates of /.L (Watts 1975) and 
performed a biased ratio analysis to estimate -y(f); that is, we extrapolate the sequence 
(see Gaunt and Guttmann 1974) 

(3.1) 

In figure 1 we show the n dependence of -y,,(f) for f =  3 , 4 , 5  and 6 on the triangular 
lattice. It is clear that -y(f) decreases asf increases and that the values of the exponent 
are close to the O ( E )  predictions of Miyake and Freed (indicated by arrows in the 
figure). This strengthens the conclusions drawn from figure 1 in Lipson er a1 (1985). 

The universality of this exponent with respect to different lattices is illustrated in 
figure 2 where we show the n dependence of y,,(3) for the square and triangular lattices. 
For each lattice the limit of the sequence is consistent with the O ( E )  prediction of 
Miyake and Freed. 

We expect that the exponent is sufficiently robust that its value is not affected if 
the branch lengths differ by one or two monomers. We call such stars quasi-uniform 
stars. This is confirmed by the results shown in figure 2 for quasi-uniform stars on the 
square lattice having (n, n, n + l ) ,  ( n ,  n + 1, n + 1 )  and ( n  - 1, n, n + 1 )  monomers in the 
respective branches. (The exact enumeration data are given in the appendix, table 
A4.) Indeed the data for such stars are remarkably well converged and show only a 
small odd-even oscillation compared with uniform stars. In general, odd-even oscilla- 
tions arise for lattices in which only even-edged polygons can be embedded. The 
reduced odd-even alternation may reflect the smaller contribution of polygon terms 
to the generating function in the cases where the sum of the number of edges of two 
branches is odd. This reduced odd-even oscillation allows us to make a reasonably 
precise estimate of 743). Taking account of the results for quasi-uniform stars, as 

Y n ( f )  = 1 + n{[s , ( f ) /d sn - , ( f ) l -  1). 
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Figure 1. Ratio estimates of y , ( n  for the traingular lattice. 
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Figure 2. Ratio estimates of y,(3) for uniform and quasi-uniform stars in two dimensions. 
A,  ( n ,  n, n )  triangular; 0, ( n ,  n, n )  square; +, (n, n, n + 1 )  square; U, (n, n + 1, n + 1 )  square; 
0, ( n - l , n , n + l )  square. 
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well as for uniform stars on the square and triangular lattices, we estimate that 

y(3) = 1.05i0.05. (3.2) 
We have generated samples of uniform stars on the simple cubic lattice with up to 

six branches and with up to 50 edges in each branch, using an inversely restricted 
Monte Carlo method (Rosenbluth and Rosenbluth 1955). Sample sizes were typically 
about 500 000. We have used these results to estimate the total number of stars, s,( f ) .  
It follows from (1.1) and (2.8) that we can estimate y(  f )  - 1 from the intercept of a 
plot of log(s,( f) /pnf)/ log(nf) against l/log(nf). The results for three dimensions are 
shown in figure 3, where we make use of the unbiased estimate of p =4.6838 (Watts 

\ 
\ 
\ 

\ .: 
\ 
\ 
\ 

'... \. 
-... '.. , 

-3.0 
0 0.1 0.2 0.3 

Iliog I n f  ) 

Figure 3. Monte Carlo estimates of y,(f) for the simple cubic lattice. 

Table 1. Comparison of estimates for y(fl from Monte Carlo data and from an O ( E )  
renormalisation group treatment. 

d = 2  d = 3  

Miyake and Miyake and 
f Freed (1983) Present estimate Freed (1983) Present estimate 

3 1 1.07 i 0.02 1 1.05 * 0.03 
4 0.5 0.52 i 0.04 0.75 0.88 * 0.03 
5 -0.25 -0.29 i 0.04 0.375 0.55 * 0.05 
6 -1.25 -1.33 * 0.05 -0.125 0.20* 0.05 
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Figure 4. Monte Carlo estimates of y,(f) for the square ( S Q )  and triangular (T) lattices. 

1975) for the simple cubic lattice. Our estimates of -y(f) in three dimensions are given 
in table 1. 

We have carried out similar calculations for the square and triangular lattices but 
the sampling method is now much less efficient, because of the serious problem of 
trapping. Consequently, we have restricted our calculations to values of n 30. Our 
estimates of ~ ( f ) ,  based upon data for the square and triangular lattices and plotted 
in figure 4, are also presented in table 1. The agreement between the series analysis 
and Monte Carlo estimates in two dimensions for f =  3 is very satisfactory. 

4. Discussion 

The obvious qualitative feature of the results in table 1 is the decrease in ~ ( f )  as f 
increases. This reflects the interference between the different branches, which becomes 
more marked as f increases and which is felt more strongly in two dimensions than 
in three. Indeed, on a Bethe lattice, for which there is no interference between branches, 
-y(f)  = 1 for a l l5  Our results suggest that the Miyake and Freed treatment overestimates 
the interference effects in three dimensions. The resulting underestimation of the 
exponent (in three dimensions), which is small for f =  3, becomes progressively more 
serious as f increases. I t  is not clear to what extent this disagreement will be reduced 
by extending their treatment to O(E ' ) .  Indeed, as Miyake and Freed themselves point 
out, their use of a point potential becomes a serious limitation at high f values, where 
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packing considerations near the branch point become important. This view is consistent 
with the scaling theory of Daoud and Cotton (1982) which incorporates an extended 
close-packed region close to the branch point. 

In two dimensions, one might expect that these limitations would be even more 
serious but, in fact, the agreement between the O ( E )  and the Monte Carlo estimates 
is surprisingly good. It may be that truncating the E expansion at O ( E )  in two 
dimensions is the optimum approximation in view of the fact that the expansion is 
asymptotic. In this connection, a determination of the O ( E * )  terms would be useful. 

Finally, we wish to comment on the connection between these results and a 
conjecture presented in a previous paper (Gaunt et a1 1984). There we argued that 
the universality class for lattice trees with specified topologies depends on the number, 
b, of branches, through the critical exponent ( y + b - 1). Uniform (and quasi-uniform) 
stars form a subset of all lattice trees. Clearly, the number of highly irregular stars is 
far greater than the numbers of uniform and quasi-uniform stars, and it is this former 
subset which dominates and leads to the exponent ( y + b - 1). 
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Appendix 

Exact enumeration data for uniform and quasi-uniform stars with f branches. 

Table A l .  f= 3. 

n SQ T D sc BCC FCC 
~~ ~ 

1 4 20 4 20 56 220 
2 84 1312 108 2 260 17 240 226 780 
3 1380 94 956 2 700 227 172 4657016 231118428 
4 28 164 6 903 764 64 348 24159620 1340720088 
5 504 084 498 757 752 1 489 236 
6 9 675 548 36 814 788 
7 175 236 508 877 342 204 

Table A2. f = 4. 

n SQ T D sc 

1 1 15 1 15 
2 47 2 280 81 7 605 
3 1 297 555 939 5601 3019767 
4 70 257 145 989 303 350 613 
5 2 809 521 20 663 877 
6 136 065 237 1482001791 
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Table A3. f = 5 and 6. 

f= 5 f = 6  

n T sc T sc 

1 6 6 1 1 
2 1524 13 050 322 8867 
3 1 133 598 18 555414 651 167 

Table A4. f =  3 for the SQ lattice. 
~ 

n ( n ,  n, n + 1) (n ,  n +  1, n + 1) ( n  - 1, n, n +  1) 

1 36 100 
2 668 1700 520 
3 11 588 31 692 9 392 
4 224 620 537 796 166 952 
5 4 093 036 10 961 516 3 163 280 
6 76 845 956 201 836 388 57 805 704 
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